Heart Rhythm Disorders

How do you quantify risk?

Dr Peter O'Callaghan Heart Rhythm Consultant, University Hospital of Wales Hon Senior Lecturer, Cardiff University

Heart Rhythm Disorders Scale of the Problem

- 1/2 population will have an episode of transient loss of consciousness (T-LOC) at some stage in their life.
- Palpitations = 1/3 all referrals to cardiology
- 1% all A&E attendances due to T-LOC

Heart Rhythm Disorders Scale of the Problem

- 1/2 population will have an episode of transient loss of consciousness (T-LOC) at some stage in their life.
- Palpitations = 1/3 all referrals to cardiology
- 1% all A&E attendances due to T-LOC

Benign - Fatal (Cardiac Arrest)

Recurrent Transient Loss of Consciousness T-LOC

Transient loss of consciousness due to cerebral hypoperfusion

Prognosis – Framingham Heart Study 1971- 1998

Adapted from Soteriades E et al. NEJM 2002; 347: 878-85

Prognosis – Framingham Heart Study 1971- 1998

Adapted from Soteriades E et al. NEJM 2002; 347: 878-85

An abnormal awareness of the heart beat

An abnormal awareness of the heart beat

Paroxysmal Sustained Tachycardias

- AV node dependent tachycardias
- Atrial tachyarrhythmias
- Ventricular tachyarrhythmias

An abnormal awareness of the heart beat

Paroxysmal Sustained Tachycardias

- AV node dependent tachycardias (Curable!)
- Atrial tachyarrhythmias
- Ventricular tachyarrhythmias

An abnormal awareness of the heart beats

Paroxysmal Sustained Tachycardias

- AV node dependent tachycardias
- Atrial tachyarrhythmias
- Ventricular tachyarrhythmias

CHADS-VASc Score and Stroke Risk

Risk factor	Score
Congestive heart failure/LV dysfunction	1
Hypertension	I.
Age ≥75	2
Diabetes mellitus	· · · · · · · · · · · · · · · · · · ·
Stroke/TIA/thrombo-embolism	2
Vascular disease ^a	1
Age 65-74	- I
Sex category (i.e. female sex)	1
Maximum score	9

Lip G et al. The Euro Heart Survey on AF. Chest 2010; 137: 263-72.

Danish National Registry

CHADS-VASc Score	n (%) 121,280 (100)	Thromboembolism / 100 person years
0	10125 (8.4)	0.8
1	14526 (12.0)	2.0
2	22115 (18.2)	3.7
3	27834 (23.0)	5.9
4	22676 (18.7)	9.3
5	14213 (11.7)	15.6
6	6927 (5.7)	19.7
7	2327 (1.9)	21.5
8	467 (0.4)	22.4
9	70 (0.1)	23.6

Olsen J. BMJ On-line First 2011

Assessing Risk in Atrial Tachyarrhythmias (AT, AFL, Afib)

CHADSVASc Score = Annual stroke risk

Oral anticoagulation reduces risk by 2/3

Aspirin confers little benefit (20% reduction)

Danish National Registry

CHADS-VASc Score	n (%) 121,280 (100)	Thromboembolism / 100 person years	Warfarin
0	10125 (8.4)	0.8	
1	14526 (12.0)	2.0	
2	22115 (18.2)	3.7	
3	27834 (23.0)	5.9	2%
4	22676 (18.7)	9.3	
5	14213 (11.7)	15.6	
6	6927 (5.7)	19.7	
7	2327 (1.9)	21.5	
8	467 (0.4)	22.4	
9	70 (0.1)	23.6	

Olsen J. BMJ On-line First 2011

An abnormal awareness of the heart beat

Paroxysmal Sustained Tachycardias

- AV node dependent tachycardias
- Atrial tachyarrhythmias
- Ventricular tachyarrhythmias
 - Scar related VT
 - Normal Heart VT

Ventricular Tachycardia (Scar Related VT)

Conduction Velocity dependent on Fibre orientation

Reentry – Scar related VT

Peri-Infarct Zone

VT initiation

VT initiation

Reentry – Scar related VT

Pathophysiology of Cardiac Arrest

An abnormal awareness of the heart beats

Paroxysmal Sustained TachycardiasAV node dependent tachycardias

- Atrial tachyarrhythmias ightarrow
- Ventricular tachyarrhythmias ightarrow

Ventricular Ectopics Benign or Marker of Disease?

Ectopics – Risk stratification

	Low	Higher
Morphology	Unifocal RVOT focus	Multifocal
Timing	Rest	On exercise
Frequency	Single < 10%	Couplets Triplets (NSVT) > 10%
Exercise	Suppresses	Increased frequency
Exercise capacity	Normal	Reduced
Echocardiogram	Normal	Abnormal
ECG	Normal	Abnormal
FHx ICC	No	Yes

Causes of SCD by age

Dr Joe Galvin, Mater Hospital

Causes of SCD under 30 years

The majority of sudden unexplained deaths < 30 years are due to inherited cardiac conditions ~ 400/year in England

Heart Rhythm Disorders Unexplained T-LOC, undocumented tachycardias or ectopic beats

Who is low risk?

Structurally normal heart

• Normal 12 lead ECG

• No FHx sudden death < 35 years

Heart Rhythm Disorders Unexplained T-LOC, undocumented tachycardias or ectopic beats

Who is high risk?

Significant structurally normal heart

Relevant 12 lead ECG abnormality

• FHx sudden death < 35 years

Low Risk \neq Zero Risk

Inherited Cardiac Conditions How do you Quantify Risk?

Case 1

32 year old female Father died suddenly aged 44 Brother died suddenly aged 12 Gene + QTc = 465ms Case 2 32 year old female Father still alive 56yrs No FHx sudden death Gene + QTc = 540ms

Phenotype expression determines individual risk

Prevent Sudden Death

External Defibrillator -999

First responder AED

Public Access Defibrillator

Implantable Cardioverter Defibrillator

6v battery Delivers 700v shock Defibrillates within 15s onset resulting in a success rate of 99.9% PG battery typically lasts 8 years

ICD implantation

Day case procedure Local anaesthesia Conscious sedation

Case 1

54 year old man

1 vessel disease – Occluded Mid LAD

Apical infarct

EF = 45%

Case 1

54 year old man

1 vessel disease – Occluded Mid LAD

Apical infarct

EF = 45%

Life rating + 150

Case 1

54 year old man

1 vessel disease – Occluded Mid LAD

Apical infarct

EF = 45%

Life rating + 150

Case 2

54 year old cardiac arrest survivor 1 vessel disease – Occluded mid LAD Apical infarct EF = 45% ICD in situ > 12 months

Decline!

Case 1

54 year old man

1 vessel disease – Occluded Mid LAD

Apical infarct

EF = 45%

Life rating + 150

At risk of future cardiac arrest

Case 2

54 year old cardiac arrest survivor 1 vessel disease – Occluded mid LAD Apical infarct EF = 45% ICD in situ > 12 months

Decline!

99.9% protection from arrhythmic death

Conclusions

- Heart rhythm disorders very common & vast majority are benign (> 90% syncope)
- Heart rhythm disorders cause sudden death which is usually both predictable and preventable
- Atrial tachyarrhythmias should be rated on the basis of CHADSVASc score + anticoagulation status
- Cardiac arrest risk \propto Scar Burden

Conclusions

- Diagnosing heart rhythm problems can be challenging In contrast risk stratification is easy!
- Phenotype not genotype determines individual risk
- Tachycardias are curable. Incurable life-threatening tachycardias can be treated with 99.9% effectiveness
- Low risk ≠ Zero risk and we frequently assess using suboptimal & incomplete data

Case Presentation

- 54 year old bus driver
- T-LOC x 1 RTA
 - Little warning, motionless x 2 min
- No other cardiac symptoms
- No FHx ICC
- DHx Nil
- SHX Smokes 20/day
- O/E NAD
- ECG Subtle Brugada changes & subtle pre-excitation

Case Presentation

- CT brain scan NAD
- Neurology Likely to be cardiac not neurological
- Echocardiogram Normal
- Diagnostic angiogram Normal
- Adenosine test –Ve (No accessory pathway)
- Ajmaline test No Brugada ECG
- Prolonged inpatient monitoring NAD

CCTV from the bus!

Incidence of Ventricular Premature Beats

Data from Kostis JB. Circulation. 1981;63(6):1353.

Figure 2. Event-free (death, myocardial infarction) survival in apparently healthy, middle-aged and elderly subjects with (*dashed line*) and without (*solid line*) frequent (\geq 30/hour) VPCs (p = 0.0012).

Sajadieh et al Am J Cardiol 2006;97:1351-1357